Robust heteroclinic cycles in the one-dimensional complex Ginzburg–Landau equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust heteroclinic Cycles in Two-Dimensional Rayleigh-bÉnard convection without Boussinesq Symmetry

The onset of convection in systems that are heated via current dissipation in the lower boundary or that lose heat from the top boundary via Newton’s law of cooling is formulated as a bifurcation problem. The Rayleigh number as usually defined is shown to be inappropriate as a bifurcation parameter since the temperature difference across the layer depends on the amplitude of convection and henc...

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Homoclinic Loops, Heteroclinic Cycles, and Rank One Dynamics

We prove that genuine nonuniformly hyperbolic dynamics emerge when flows in RN with homoclinic loops or heteroclinic cycles are subjected to certain time-periodic forcing. In particular, we establish the emergence of strange attractors and SRB measures with strong statistical properties (central limit theorem, exponential decay of correlations, et cetera). We identify and study the mechanism re...

متن کامل

Structurally stable heteroclinic cycles

This paper describes a previously undocumented phenomenon in dynamical systems theory; namely, the occurrence of heteroclinic cycles that are structurally stable within the space of C vector fields equivariant with respect to a symmetry group. In the space X(M) of C vector fields on a manifold M, there is a residual set of vector fields having no trajectories joining saddle points with stable m...

متن کامل

Disordered Regimes of the one-dimensional complex Ginzburg-Landau equation

I review recent work on the “phase diagram” of the one-dimensional complex Ginzburg-Landau equation for system sizes at which chaos is extensive. Particular attention is paid to a detailed description of the spatiotemporally disordered regimes encountered. The nature of the transition lines separating these phases is discussed, and preliminary results are presented which aim at evaluating the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physica D: Nonlinear Phenomena

سال: 2005

ISSN: 0167-2789

DOI: 10.1016/j.physd.2005.04.019